If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.75t^2+2t-80=0
a = 4.75; b = 2; c = -80;
Δ = b2-4ac
Δ = 22-4·4.75·(-80)
Δ = 1524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1524}=\sqrt{4*381}=\sqrt{4}*\sqrt{381}=2\sqrt{381}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{381}}{2*4.75}=\frac{-2-2\sqrt{381}}{9.5} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{381}}{2*4.75}=\frac{-2+2\sqrt{381}}{9.5} $
| -11•k=-33 | | 2/3x+40=-2x/9 | | −5x^2+12x=8 | | 2x2+9x+7=0 | | −5x2+12x=8 | | 9-3/3×5+10=x | | 3x+7+2x+1=56 | | (4,2x)=(2x,x-4) | | 56=1/2h(6+1) | | 3k+9k=27 | | 1/2x+1/3=5/6x-3/4 | | 1/2x+1/3=5/6x=3/4 | | 2(5c−7)=10(c−3) | | 6(l+3)=3(2l+6) | | 3/4/x=5/12 | | -(11/19)x=7 | | 2/3(6x+9)=-5x+4 | | (x+3)÷x=16÷10 | | 3x+-81+1/2x=360 | | 23x-9/24=8x+6/24 | | (3y5+4y2-3)+(2y5+7y2+3)=0 | | x+x-35+x-46+1/2x=360 | | 1/3*x=1/4*x+5 | | r^2+14r-112=0 | | 3(x+9)=2(x-4) | | 2x-1/5=4-3x/3 | | 2x(2x+2)=168 | | 17+2(1/2)=h | | -6=1/20g | | -6=1-20h | | x3+5x2+10x+12=0 | | Y=1.7x+160 |